
UCRL-52995

Verification of timing constraints
on large digital systems

Thomas Melvin McWilliams
(Ph.D. Thesis)

May 1980

This report was pnpared as an account of work sponsored by the United States Government. Neither the
United States nor the United States Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe privately owned rights.

Reference to a company or product namedoes not imply approval or recommendation of the product by
the University of California or the U.S. Department of Energy to the exclusion of others that may be
suitable.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
Laboratory under Contract W-1405-Eng-48.

UCR L-52995

Verification of tim ing constraints
on large digital systems

Thomas Melvin McWilliams

(Ph.D. Thesis)

Manuscript date: May 1980

LAWRENCE LIVERMORE LABORATORY
University of California l Livermore, California 0 94550

Available from: National Technical Information Service l U.S. Department of Commerce
5285 Port Royal Road l Springfield, VA 22 161 l $9.00 per copy l (Microfiche $3.50)

VERIFICATION OF TIMING CONSTRAINTS
ON LARGE DIGITAL SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

bY

Thomas Melvin McWilliams

May 1980

Verification of Timing Constraints in Large Digital Systems

Thomas Melvin McWilliams

May 1980

Computer Science Department
Stanford University

Stanford, California 94305

ABSTRACT

A new approach to the verification of timing constraints on large digital systems
has been developed. The associated algorithm is computationally efficient, and provides
early and continuous feedback about the timing aspects of synchronous sequential
circuits as they are designed. It also provides means for conveniently verifying the
design section-by-section for designs which are too large to examine as a unit.

This approach is new in that It uses a Stable value” to represent signals In the
large maprity of instances in which it is unnecessary to know whether the signals are
true or false in order to examine satisfaction of the timing constraints. For the
remaining instances, it represents the full value behavior of signals, allowing it to
evaluate compliance with the remaining timing constraints. This use of the “stable
value” greatly reduces the number of states through which a digital system needs to be
taken in the process of verifying its timing constraints, which in turn greatly reduces the
amount of computing effort required, relative to that needed to verify the timing
constraints via more traditional logic simulation. Not needing to know the values of
most signals also greatly reduces the size of the data base needed to drive the verification
process, relative to that required in doing logic simulation. Both of these savings are of
exponential order. This approach thus makes feasible for the first time the exhaustive
examination of complex digital circuits for satisfaction of timing constraints.

A system has been implemented using this approach which takes a digital logic
design specified in the SCALD Hardware Description Language, and verifies all of the
timing constraints specified within it. This system has been used in the design of a very
high performance central processing unit, the S-I Mark IIA processor. The use of the
Timing Verifier allowed timing errors to be identified early in the design process, while
it was still easy to correct them. Such timely error elimination has permitted the design
to be completed more rapidly, and has also supported the creation of a design which will
perform more rapidly without timing errors, when it is implemented in hardware.

KEYWORDS: Design verification, Timing constraints, Digital systems, Logic
simulation, Hierarchical design

-iv-

Acknowledgments

I would like to thank Forest Baskett, Bill vancleemput, and Lowell Wood for the
constant support and helpful guidance they have provided throughout the course of this
research, and for their many useful suggestions for improvements in this thesis. The
Fannie and John Hertz Foundation’s gracious support via a Hertz Fellowship through
the course of my graduate studies has provided me the freedom to pursue this research.
Curt Widdoes worked with me on the development of the SCALD base on which the
Timing Verifier has been erected, in a collaboration that was as productive as it was
enjoyable. Bill Bryson, Mike Farmwald, and Jeff Rubin have been the first major users
of the Timing Verifier, and their patience and many suggestions for its improvement
have been most appreciated. Steve Correll generously provided Invaluable aid in
building and enhancing the S-l documentation system, on which this thesis was
produced.

My thanks also go to the Office of Naval Research, the Naval Electronics System
Command, and the Naval Material Command for their support of the S-l Project,
which has provided the necessary environment for this research, and to Curt Widdoes
and Lowell Wood, whose tireless efforts were essential in getting the S-l Pro&t
underway.

Last, but most fervently of all, my gratitude to my wife, Beth, for having put up _
with me during this period.

This work was in part performed under the auspices of the U.S. Department of
Energy at the Lawrence Livermore National Laboratory, which is operated by the
University of California under contract No. W-7405-ENG-48.

-v-

Table of Contents

I INTRODUCTION 1

1.1 PURPOSE OF THIS INVESTIGATION . . . , . .
1.2 TYPES OF DIGITAL SYSTEMS

1.2.1 Combinational Systems
1.2.2 Synchronous Sequential Systems
1.2.3 Asynchronous Sequential Systems
1.2.4 Types of Systems Addressed by this Thesis . . .

I.3 TYPES OF TIMING ERRORS MADE BY DESIGNERS .
1.3.1 System-Level Timing Errors
1.3.2 Logic-Level Timing Errors
1.3.3 Circuit-Level Timing Errors

1.4 PREVIOUS APPROACHES TO TIMING VERIFICATION
1.4.1 Logic Simulation

1.4.1.1 Minimum/Maximum-Based Logic Simulators
1.4.1.2 Probability-Based Logic Simulators . . .

1.4.2 Worst-Case Path-Searching Algorithms

. 1

. 4

. 4

. 5

. 7

. 11

. II
6 12
. 13
. 18
. 19
. 19
. 22
. 23
. 24

II A NEW APPROACH TO TIMING VERIFICATION 26

2.1
2.2
2.3
2.4

2.5

2.6
2.7

2.8
2.9

OVERVIEW OF THE VERIFICATION PROCESS
CIRCUIT CLOCK PERIOD
TIME UNITS
CIRCUIT MODEL FEATURES
2.4.1 Value System Used To Represent Signals . .
2.4.2 Definition of Combinational Functions . . .
2.4.3 Models for Registers and Latches
2.4.4 Set-up and Hold Time Checkers
2.4.5 Minimum Pulse Width Checking
SIGNAL ASSERTIONS
2.5.1 Clock Assertions
2.5.2 Stable Assertions
2.5.3 Interconnection Delay Specification
EVALUATION DIRECTIVES
CASE ANALYSIS
2.7. I Case Specification
REPRESENTATION OF SIGNAL VALUES . .
TECHNIQUE USED FOR CIRCUIT EVALUATION

. . . 27

. . . 29

. . . 30

. . . 30

. . . 31

. . . 32

. . . 35

. . . 38

. . . 39

. . . 40

. . . 41

. . . 44

. . . 45

. . . 46

. . . 49

. . . 52

. . . 53

. . . 57

-vi-

III APPLICATION OF TIMING VERIFICATION 59

3.1 SPECIFICATION OF TIMING PROPERTIES OF COMPONENTS 59
3.2 CIRCUIT VERIFICATION EXAMPLE 71
3.3 PROCESSOR DESIGN TIMING VERIFICATION 74

3.3.1 Design Experience in Using the Timing Verifier . . . 76
3.3.2 Execution Statistics of Timing Verifier 79

IV CONCLUSIONS AND FUTURE RESEARCH

4.1 CONTRIBUTIONS
4.2 FUTURE RESEARCH

4.2.1 Asynchronous, Self-Timed Circuits . .,
4.2.2 Different Rising and Falling Delays
4.2.3 Correlations Within Digital Systems
4.2.4 Probability-Based Analysis

V REFERENCES 98

86

86
89
90
91
92
95

-vii-

List of Figures

1-I A synchronous sequential system
1-2 An asynchronous sequential system
l-3 A set-reset latch . . , ‘.
I-4 Example of a D-Type register
l-5 Example of a hazard on a clock input to a register .
2-1 Two register models used by Timing Verifier . . .
2-2 Two latch models used by Timing Verifier . . .
2-3 Set-up and hold time checkers used by Timing Verifier
2-4 Minimum pulse width checker
2-5 Example macro definition

2-6 Example of circuit requiring case analysis
2-7 Data structures used to represent signal values . .
2-8 Example showing how skew is handled

2-9 Output signal 2 with skew represented in signal value
3-1 Manufacturer’s data sheet for register file chip . .
3-2 Manufacturer’s data sheet for register file chip . .
3-3 Manufacturer’s data sheet for register file chip . .
3-4 Manufacturer’s data sheet for register file chip . .
3-5 Definition of a 16-word random access memory chip
3-6 Definition of a P-input multiplexer chip
3-7 Definition of an edge-triggered register chip . . .
3-8 Definition of a P-input OR gate
3-9 Definition of an arithmetic/logic chip (ALU) . . .
3-10 Timing Verifier output showing values of signals .
3-11 Set-up and hold time errors found by Timing Verifier
3-12 Typical arithmetic circuit in the S-l Mark IIA design
4-I Example showing correlation problem

.

.

.

.

.

.

.

.

.

.

.

.

. , . . .

.

.

.

.

.

.

.

.

.

.

.
. . . .

. . , . .

. . . . *

6
8

10
15
17
36
37
39
40
48
51
54
55
56
62
63
64
65
66
67
68
69
70
73
74
78
94

4-2 Example showing correlation problem with extra delay inserted . . 95

-viii-

List of Tables

3-1 Execution statistics for 6357 chip design example 80
3-2 Primitive definitions generated for 6357 chip example 82
3-3 Storage required by Timing Verifier for 6357 chip example . . . 84

-ix-

Chapter I

INTRODUCTION

I.1 PURPOSE OF THIS INV,ESTICATiON

The components comprising a digital system have a range of switching times

associated with them. If the voltage at one end of a wire is changed, then the voltage at

the other end of the wire will change after some delay, which is partly determined by the

transmission line characteristics of the wire and its length. If the Input of a gate or other

circuit is changed, there is a delay time which must elapse before its output can be

guaranteed to have the value corresponding to its hew input value. Because of

variations in the construction of these components, these delay times vary from one

component to the next.

-l-

In order that a digital system perform correctly, a designer must take into account

the possible propagation delays associated with each of the elements making up the

system. If a path through a digital system has either too long or too short a delay

associated with it, then the value of the circuit may be wrong at a critical point in space

and time, causing the circuit to yield an incorrect result. This is called a timing error.

Digital logic as it is currently implemented is intrinsically susceptible to such errors, and

their complete elimination from all portions of a digital logic system is essential to

guarantee that the logic will perform reliably and reproducibly under all variations in

data and programs. This thesis addresses the early and efficient detection of these

timing errors, so that digital logic designers can henceforth frequently check their designs

for these errors as the design proceeds, thereby finding timing errors before the design

proceeds too far and the errors become difficult to correct. Indeed, for complicated logic

circuits, the ideas developed in this thesis makes exhaustive timing verification feasible

for the first time.

A system which uses these ideas has been implemented and is called the SCALD

Timing Verifier. The Timing Verifier is a part of the SCALD (Structured

Computer-Aided Logic Design) system EMc78a, Mc78b, Sp78, Sp791 SCALD is a

complete computer-aided design automation environment which processes a

graphics-based, hierarchical description of a digital logic design, generating a complete

set of low-level documentation which includes that necessary to implement it in

hardware.

The timing verification approach developed here operates on synchronous

-2-

sequential systems. It performs a complete timing constraint verification based on the

minimum and maximum propagation delays of the circuit components, their set-up and

hold times, minimum pulse width constraints, and interconnection delays.

One of the principal features of this approach is its ability to verify designs by

modules, where a module is a logical section of a design. All of the signals going

between modules must have user-specified assertions on them stating when they can

change, and when they are stable. This ability to verify designs by modules permits

much larger designs to be verified than would otherwise be possible because of

limitations on the amount of memory available. It is also convenient for the verification

of designs being done by a group of designers, to allow each designer to verify the

timing constraints within his section of the design, independently of the rest of the

design.

The utilization of user-specified timing assertions on not-yet-generated signals

allows the design to be checked as it progresses, even on a day-by-day basis. This is

particularly important in that it allows timing errors to be corrected before they have a

chance to propagate their effects throughout the design, or to cause major changes to be

made late in the design. It also supports formation of an accurate estimate of the cycle

time of a digital system before its design is completed.

-3-

1.2 TYPES OF DIGITAL SYSTEMS

Digital logic systems can be classified into the following different types:

combinational systems, synchronous sequential systems, or asynchronous sequential

systems. The following sections will define these different types of systems, and will

discuss the types of timing errors that occur in them.

1.2.1 Combinational Systems

Digital systems whose outputs are only a function of the current values of the

inputs are called combinational systems EKr67, M&Z, Ob70, Un691 These systems have

no internal state, and tend to be fairly simple. They consist of some number of levels of

gates and lnverters connected together with no feedback paths.

The main timing parameters of interest for combinational systems are the

minimum and maximum delay through the logic from each of the inputs to each of the

outputs. These are the timing parameters normally given by the manufacturer for an

integrated circuit which consists of a combinational network of gates.

-4-

The calculation of the minimum propagation delay from any one input to any

output is fairly simple. The delay along each of the paths from the input to the output

of interest is calculated by summing up the minimum delay of each of the elements along

the path, and then the minimum delay is given by the shortest delay path. The

maximum propagation delay is calculated in the same way, except that the maximum

delay of each element is used, and then the longest delay path determines the maximum

propagation delay.

1.2.2 Synchronous Seaucntial Systems

A digital system Is sequential if it stores information concerning its past input

states. A synchmow repentid system [Kr67, Mc62, Ob70, Un691 is one in which the

stored internal state changes only at times determined by a central clock. The internal

state is either stored in registers or latches, but is never stored by just creating feedback

paths within the logic. In fact, every feedback path must contain one or more clocked

registers or latches. Figure I-l shows a block diagram of a synchronous sequential

system.

A synchronous sequential system must have one central clock. All of the clock

signals used in the design must then be generated from this central clock. The reason

for having only one clock is so that the entire network uses a common standard for

determining when to change the stored state. If multiple clocks are used, then a section

of the logic which uses one clock cannot be certain that signals generated from a section

which uses another clock will be stable at a particular time within its clock period, even

if all relevant timing properties of the two sections are known. This problem of

communicating between two synchronous systems is the classical synchronization problem

[Li66, Co69, Ch72, Hu751.

> >

>
COMBINQTIC+UX oUTPUTS

LOGIC

>

REGISTER

Figure 1-l

A synchronous sequential system

IWIJTS

INERTIFlL
DEWY

> >

>
COWBINQTIONAL

LOGIC >

)

OLJ-FUTS

Figure 1-2

An asynchronous sequential system

The following example demonstrates the operation of a simple asynchronous

sequential circuit. Figure i-3 shows a set-reset type latch constructed out of two NOR

gates. Normally both the “SET” and “RESET” inputs are false. If the “SET” input goes

true, then the “A” output will go false, which in turn will cause the “B’ output to go true.

With the “B” output true, the “A” output will stay false even if the “SET” Input is made

-&

1.23 Asynchronous Sequential Systems

Figure l-2 shows a block diagram of an asynchronous sequential system.

Asynchronous sequential systems store internal state, like synchronous sequential systems,

but are not required to have a central clock to control when the stored internal state can

change IKr67, Mc62, Ob70, Un691 Both synchronous sequential systems and

combinational systems are special cases of asynchronous sequential systems.

Asynchronous sequential systems can either use clocked registers and latches to

hold the internal state, or they can store state information by having feedback paths

within the logic network which contain some delay in them. The delay is necessary so

that when an input changes, the new outputs are a function of the old output values (and

the new inputs), and not of the new outputs. The inertial-delay elements shown in the

feedback paths in Figure 1-2 also filter out small pulses which may occur in the output

from the combinational logic elements. This filtering is necessary If the comblnational

logic contains any Aazurd~. (A hazard occurs when a signal goes to the wrong value for

a short period of time, because ,of a difference In delay between different paths through

the combinational logic.)

-7-

false again. In this way, the latch has stored the information that the “SET” input has

been true. The “RESET” input can be used to clear the output of the latch in a similar

fashion. The delay In the feedback path is provided by the intrinsic internal delay of

the gates which constitute the circuit.

Determining when one signal is changing in relation to another signal in

asynchronous sequential circuits is much more difficult than in synchronous sequential

circuits, because there is no central clock determining when signals can be changed.

Instead, there are numerous delays and feedback paths within the network controlling

the timing of the circuit. Verifying that there are no timing errors In an asynchronous

sequential circuit is therefore fundamentally more difficult than doing so for

synchronous sequential circuits.

-9-

B
I

8
RESET

Figure i-3

A set-reset latch

-IO-

1.2.4 Types of Systems Addressed bv this Thesig

The timing verification approach developed in this thesis is designed to operate

on combinational and synchronous sequential circuits. These are the dominant types of

circuits used in large digital systems at the present time. In systems which contain a

mixture of circuit types, this approach may be used to verify correct timing behavior of

the synchronous and combinational parts, ignoring the rest of the design. Analysis of

the timing of asynchronous circuits requires full functional verification, which is

beyound the scope of this thesis.

1.3 TYPES OF TIWIING ERRORS MADE BY DESIGNERS

Within synchronous sequential digital systems, there are a number of different

levels at which timing errors may occur. These can be resolved into three main levels:

system-level timing errors which occur over multiple clock cycles, logic-level timing errors

which occur within a clock cycle, and circuit-level timing errors which occur within a

gate or storage element. The next three sections will treat each type of error in detail.

-II-

1.3.1 System-Level Timing Errors

On the system level, timing errors may exist in both the software running on the

system, in the microcode and in the hardware. System-level timing errors are those types

of errors which occur between two units interacting over multiple clock cycles.

Consider the timing errors which can occur in software. The operating system

might try and read some data being retrieved from a disk storage unit before the unit’s

controller has finished writing it into the CPU’s memory, This results in the wrong

value being read. Another example is an interrupt occurring during a critical sequence

of code. This could result in an input operation changing a variable which the code

sequence depended on not being changed at that time.

In the microcode or hardware, there can be errors In the communications protocol

used between two different units. Consider a CPU talking to a controller on a bus. The

definition of the bus might require that the CPU wait until an acknowledgment signal is

generated before it is allowed to proceed after a particular operation. If there is a design

error in the CPU such that it waits a certain amount of time, instead of waiting for the

acknowledgment signal, an error would occur if the acknowledgment signal arrived later

than expected.

-12-

Verification of these system-level timing errors is beyond the scope of this thesis.

The currently best known way of addressing these problems is through the use of logic

or system level simulation.

1.3.2 Lo&-Level Timinn Errors

On the logic level, there are a number of types of timing errors which may acur.

These include failure to meet the set-up, hold, or minimum pulse width time

requirements for a register, latch, memory, or other complex function. These generally

occur because the delay of the combinational logic between two clocked elements is too

long or too short. In addition, problems due to hazards on clock signals may arise,

resulting in a register or latch being clocked unexpectedly. This could possibility cause

data to be lost. The actual delays of the interconnections between the components are

also a significant consideration, accounting for as much as half the delay in current large

systems.

Figure l-4 shows an edge-triggered D-type register, along with the definition of

the propagation delay, set-up time, hold time, and minimum pulse width constraints.

When the clock input of this register goes from a zero to a one, the register will change

its output from its current value to the value given by its data input, after .its

propagation delay has elapsed. If the data input is changing during the rising edge of

-Is-

the clock, then the value to which the register will be set is indeterminate. In order to

insure that the register is set to the proper value, the data input must be stable for a

period before the rising edge of the clock (the set-up time), and it must remain stable for

a period after the rising edge of the clock (the hold time.) In addition to set-up and hold

time constraints, the register may not operate properly unless the clock pulse is at least as

wide as the minimum clock pulse width specified for it.

WTQ INPUT

D-TYPE
REGISTER

I T DQTR WTRlT

CK
A

CLDCK 1wu-r

RLSE UTDlH
J

K PRDWXTION DELFlY , I
I

CLOCK IM=UT
I

I

I

K SETUP TIRE & HOLD TIPlE
A

\
mm IWUT

/

/
I

\

I

I

I

Figure 1-4

Example of a D-Type register

Figure 1-5 shows an edge-triggered register being clocked by the output of a gate

which has a hazard on it. The intent of this circuit is to conditionally clock the register

-lb

based on the value of the signal “ENABLE”, but because of too much delay in the

generation of “ENABLE”, the register occasionally gets clocked when it is not supposed

to. In Figure l-5, the signal “CLOCK” goes from a zero to a one 20 nsec into the cycle,

and back to a zero 30 nsec into the cycle. The signal “ENABLE” wants to be a zero, in

order to inhibit the register from being clocked, but doesn’t get to a zero until 25 nsec

into the cycle. As a result, the signal ‘REG CLOCK” is a short, 5 nsec pulse, which may

clock the register, rather than staying zero. This example is typical of a whole class of

common timing errors where control signals are generated too late to reliably control the

clocking of a register, latch, or memory element, The result can be a circuit that usually

works, but will occasionally fail, e.g., when a clock pulse wide enough to cause the register

to clock gets through when it is not supposed to. This type of intermittent timing error

can be particularly hard to find after the system is constructed, and can result in systems

that operate unreliably, but are nearly incapable of being fixed.

A significant consideration in the design of large digital systems arises from the

various delays in the interconnections between the logic elements. For short

interconnections, a timing performance analysis needs to look at the length, capacitance

and inductance of each interconnection in order to determine both the minimum and

maximum possible delay. For interconnections having propagation times longer than

roughly a quarter period of the voltage wave, a detailed analysis of the transmission line

characteristics is required to determine the minimum and maximum possible delay, and

whether there are any voltage wave reflections from impedance variations in the signal

run of sufficient magnitude to cause extra clock transitions to acur, possibly causing a

register to get clocked more times than is intended. Runs with such reflections on them

-16-

can be flagged by the transmission line simulator, allowing the timing verification

process to flag them if they affect edge-sensitive inputs.

ENW-E

IiEG CUXK

20NS.K 30 NSEC

I

i

i3NSEC 25Nsx

Figure 1-5

Example of a hazard on a clock input to a register

-17-

1.33 Circuit-Level Timine Errors

The circuit-level timing errors are those occurring within the design of the

low-level circuits which implement the basic gate and storage elements.

The analysis of the timing properties of the basic circuits used to implement the

gates and storage elements requires consideration of the analog characteristics of the

transistors and other devices used to construct them. Timing is determined by the

current-driving capability of the transistors, their frequency characteristics and the

amount of line and load capacitance that they are required to drive. Timing analysis

must determine the minimum and maximum propagation delays from the inputs to the

outputs. For registers, latches, and memory elements, values must be determined for the

set-up, hold, and minimum pulse width constraints which will insure reliable operation

of the circuit.

The analysis of these low-level circuits requires detailed circuit analysis, which is

beyound the scope of this thesis. The technique developed in this thesis verifies a

design In terms of parameterized models that represent the timing properties of these

low-level circuits. The parameters for these models are normally specified by Integrated

circuit manufacturers when designing with standard components, or can be determined

-l8-

through low-level circuit analysis for custom integrated circuits.

A.4 PREVIOUS APPROACHES TO TIMING VERIFICATION

There have been a number of approaches to the verification of timing constraints

in digital logic systems. They can be grouped into two main categories: logic simulutiun

and worst-case path analysis. The next two sections will review these two approaches.

1.4.1 Logic Simulation

The logic simulation approach consists of building a model of a digital system,

which represents both its logical and timing properties, and then using this model to

detect both logic and timing errors. This approach Is currently widely used tBa78, Bo77,

Br72a, Ch74, Ch75a, Ch75b, Ha69, Kr77, Ku76, Ma77a, Maflb, Sz72, Sr75l If the

system being simulated is a computer, then often programs will be loaded into the

simulator to be executed to determine if the digital logic design being examined will

execute them correctly and, if not, why not. The advantage of this approach over

directly implementing a prototype and testing it is that it Is generally easier, faster and

cheaper to identify and correct the errors in the simulated design, and to then update the

-19-

simulation model to reflect these changes. The logic simulator can also be built to take

into account variations in the propagation delays, set-up times, hold-times, and

minimum pulse width constraints, all of which occur from one component to the next. A

hardware prototype, on the other hand, only represents one sample of the large number

of possible combinations of timing properties, and cannot test the effects of possible

variations in the components’ timing properties.

The logic simulation of a circuit design can only show that the cases simulated will

work properly when the design is implemented. Therefore, unless @ possible cases

which have distinct timing paths for a design can be simulated, there is no guarantee

that it does not contain undetected timing errors. For the design of a computer system,

this requires that all possible programs that exercise distinct timing paths need to be

identified and tried, if it is to be definitively shown that there are no timing errors in

the design. This is clearly a difficult task for any but the simplest digital systems. It is

usually impractical for large digital logic systems. The result is that normally all of the

distinct timing paths are not exercised on a logic-simulated design, possibly leaving

undetected timing errors to cause future problems.

Another problem with the logic simulation approach to timing verification is that

it needs to know the valu.es of all the signals in the circuit. This in turn requires either

a complete design (including any microcode and programs) to be run on the simulator, or

some way of generating value patterns to drive the undefined signals. Waiting until the

design is completed to start logic simulation-- when this problem is smallest-means that

errors are not found until late in the design cycle. Generating patterns to drive

-2o-

undefined signals in mid-design is a tedious, time-consuming process. To test only the

timing of a design, and not its logical correctness as well, requires knowing only when

most signals are changing and when they are stable, not their full value behavior.

One of the harder problems in logic simulation for timing verification is how to

handle the possible range of propagation delays which a given component may have.

There are two basic types of logic simulator systems that are used to address this

problem. They are called minimum/maximum-based systems and probability-based

systems. The type of system preferable in a particular situation depends on the design

methodology used in the design to be verified. The minimum/maximum-based system

corresponds to a design methodology where the delay of each component in the system is

characterized in terms of a minimum and maximum possible value. These values are

added in pairs to yield a pair of values corresponding to the minimum and maximum

delays through any given logic path in the design. The probability-based system

corresponds to a design methodology in which the delay of each component is given a

probability distribution, and these distributions are then combined to determine the

delay of a given path through the design, to some pre-specified confidence level.

The next two sections will discuss these two different approaches in greater detail.

-21-

1.4.1.1 Minimum/Maximum-Based Logic Simulators

Minimum/maximum-based logic simulators take a minimum and maximum

specification for each timing parameter in the system to be simulated which has a

possible range of values. TEGAS [Sz72, Sz753, SAGE IKu763, and LAMP ICh74,

Ch75al are examples of minimum/maximum-based simulators. These systems have one

or more extra states beyond the basic true and false states for specifying that a signal is

changing, and that its value is not known. For example, TEGAS when doing precise

delay timing uses 6 values: 0, 1, X (initialization value), U (signal rising), D (signal

falling), and E (potential spike, hazard, or race). To model a gate with a range of

possible propagation delays with this type of logic simulator, the output will be set to

these extra values between its minimum and maximum delay. Which value it will be set

to depends on the, possible behavior of the output for the particular case being

simulated.

In general, the minimum/maximum-based system is simpler than the

probability-based system, both from the standpoint of the designer and the simulator. It

also corresponds to the way that components are normally specified. The problem with

the minimum/maximum-based system is that a real design usually could be made to run

faster than this system will predict. This is because the probability is quite low that all

of the components along a time-critical path will have the maximum or minimum

-22-

propagation delay values, if the delays of the components along that path are

uncorrelated.

1.4.1.2 Probability-Based Logic Simulators

Probability-based logic simulators are the same as minimum/maximum-based

logic simulators, except that they keep track of the mean and variance associated with

events in the simulation, instead of the minimum/maximum times associated with an

event. The “DIGSIM” system EMalla, Ma77b1, which uses this approach, assumes that

propagation delays are normally distributed, and stores a mean and variance ‘to

characterize each delay parameter. When evaluating a gate, it combines the probability

function of all of its inputs to come up with a mean and variance characterizing the

output of the gate, assuining the time of the output change can be modeled with the

normal distribution. It also considers the correlation between the different delay

parameters and events within the simulation.

The basic problem with probability-based timing verification systems is that it is

difficult to get good data on the distribution of the delays of system components and the

timing correlations between the components. IC manufacturers normally test and sort

components based on minimum/maximum delays, and not probability distributions. The

probability distribution of the delays of components is also a function of the incoming

-23-

inspection procedures used. It is also difficult to get good data on the correlations

between the delays of the different components being used in the construction of a

design. For example, if a set of chips are all produced on one wafer, or in one

production run, then their basic propagation delays may all have maximum propagation

delays. Components can be mixed from different production runs to minimize this type

of problem, but that adds to the manufacturing cost. In a probability-based system,

taking into account any correlations is essential to avoid incorrect predictions.

Calculations in a probability-based system are also much more difficult for the engineer

to perform when checking the results of the simulation, and when determining the

number of levels of logic which can be used while doing the initial design.

1.4.2 Worst-Case Path-Searchine Algorithms

The worst-case path analysis approach examines all paths through the

combinational logic between registers or latches, searching for the longest and shortest

paths. In the “GRASP” system [Wo78J, which uses this approach, the user identifies

starting and terminating points in the design by hand. The system then searches all of

the paths between these starting and terminating points to see that they are within their

user-specified timing limits. If there are loops in the network that the user hasn’t broken

with a terminating point, the “GRASP” system proceeds until it reaches some

user-specified search limit. It is then up to the user to insert a terminating point in the

-24-

loop, and to rerun the analysis.

In the Race Analysis System (RAS) IHa711, these user-specified starting and

ending points for the search are automatically determined by the location of the latches

and registers in a design, rather than by hand. The main problem with this approach is

that it is unable to take into account the value behavior of the control signals when

evaluating the timing of a circuit, and therefore tends to generate numerous irrelevant

error messages.

-2!5-

Chapter II

A NEW APPROACH TO TIMING VERIFICATION

A new approach to verifying the satisfaction of timing constraints on large digital

systems will now be described. A detailed discussion of a system implemented using this

approach will be given in the next chapter. This approach operates on synchronous

sequential systems, and checks all of the logic-level timing errors which occur within

those systems. These include the non-satisfaction of the set-up, hold, or minimum pulse

width time requirements far registers, latches, and other complex functions. In addition

to examining for these errors, it checks the timing on control signals which are ANDed

with clock signals to verify that they are stable while the clock is asserted, in order to

avoid any possible hazard conditions on control-conditioned clock lines. This approach

takes into account both the minimum and maximum propagation delays of all of a

system’s components, including the interconnections between them.

This approach does no low-level circuit analysis, but instead takes as input

-26-

parameterized models which define the operation of the gates, registers, and latches.

Entirely different techniques are needed to do the low-level circuit analysis, which

consider the analog characteristics of the circuits. It also does no system-level timing

analysts, which would require it to understand the higher level protocols used between

communicating units. The only known ways to do this are either gate-level logic

simulation or construction of the system, and then evaluate It in simulated or actual

operation. For interconnection delays, a specification of the minimum and maximum

delay from the output of one logic element to the input of another logic element is

required. The detailed transmission line analysis required to determine the possible

range of signal delays of a given interconnection is done in the SCALD Physical Design

Subsystem EMc78a, Mc78b, Sp78, Sp791

2.1 OVERVIEW OF THE VERIFICATION PROCESS

The timing verification approach developed here simulates one clock period of a

circuit, keeping track of when signals can change their value with respect to the clock

during that interval. The basic assumption behind such simulation is that signals have

a periodic behavior with regard to when they can change their value relative to the

central clock, which is normally the case for synchronous sequential circuits.

When a signal can change its value with respect to the clock is in general a

-27-

function of the operation being done by the circuit. Calculating when a signal can

change for all possible operations is in some cases overly pessimistic, and can cause

numerous irrelevant error messages to be generated. In this situation, rather than just

simulating one cycle, a number of cycles are simulated. Each simulated cycle is called a

case, and only considers a subset of the possible operations done by the circuit. This

way, each cycle simulated handles the timing properly for the operation being simulated,

avoiding irrelevant error messages.

The designer specifies the different cases that need to be simulated individually.

The first case is then simulated, detecting any possible timing errors. After that, in

going from case-to-case, only the parts of the circuit that are affected by the case

analysis are reevaluated. The total number of cycles of the circuit simulated is then

equal to the number of cases specified by the designer.

All signals except for the clocks and a few control signals are simulated in terms of

whether they are stuble or changing, instead of whether they are true or f&e. This

symbolic timing simulation has the advantage that it tests the circuit for most of the

possible state transitions in a signal pass. The resulting savings in computational effort

are clearly of factorial (i.e., exponential) order.

To clarify this approach, consider the following example. An edge-triggered

register is clocked at a particular time with respect to the central clock. The output of

the register can change only during a short time after it is clocked, so that it is

guaranteed to be stable for the entire clock period except around the point at which it is

-28-

clocked. The output of a gate driven from this register can then be changing only

during an interval of time determined by its propagation delay and when its inputs can

be changing. If either the output of the register or gate are required to be stable during

the part of the circuit cycle when they are possibly changing, then there is a possible

timing error.

The first step in the timing verification process is to calculate for each signal in a

circuit when it could change during the circuit cycle time. Once this is determined, then

it is relatively easy to check all of the.timlng constraints placed on the circuit. For

instance, in order to check the set-up and hold times on a register, all that is required is

to determine if its input could be changing at a time when it might be clocked. To check

that a control signal which is ANDed with a clock is stable when the clock is asserted is

-also a straightforward operation.

2.2 CIRCUIT CLOCK PERIOD

Circuits being verified must contain one basic clock, whose period has to be

specified. If different parts of the circuit being verified run at different clock rates, then

the period specified is the least common multiple of the different clock periods. For

example, a processor might have an instruction unit which has a period of 30 nsec and

an execution unit which has a period of 15 nsec. In this case, the period specified would

-29-

be 30 nsec. Clock signals which occur within the circuit may occur at any time within

the clock period.

2.3 TIME UNITS

Time is expressed in two sets of units to the Timing Verifier. When specifying

the timing properties of the components in which a design is Implemented, absolute time

units are used (for example, nanoseconds). When specifying clocks and assertions in the

design specification, user-specified clock unizs are employed which are convenient for the

designer to use, and which can be scaled with the clock period. For example, the clock

units for a design might be defined to be one-eighth of the clock period. This allows

the relative timing within the design to automatically scale if the clock rate Is slowed

down or speeded up as the design is done.

2.4 CIRCUIT MODEL FEATURES

Circuits are described for timing verification purposes in terms of gates, registers,

latches, set-up and hold time constraints, and minimum pulse width constraints. More

complex functions are then defined in terms of these primitives, through the use of

-3O-

graphic-based macros, using the SCALD Hardware Description Language [Mc78a,

Mc78b, Sp78, Sp791.

The following sections define the value system used to represent the behavior of

signals and defines the primitive functions used to specify the design to the Timing

Verifier.

2.4.1 Value System Used To Represent Sienals

At any instant in time, every signal in the circuit being timing-verified has exactly

one of seven values, with the following associated meanings:

0 false, or 0
1 true, or 1
S or STABLE signal, is stable, not changing
C or CHANGE signal may be changing
R or RISE signal is going from zero to one
F or FALL signal is going from one to zero
U or UNKNOWN initial value used for all signals

The value of a signal over the clock period is represented by a linked list, each node of

which specifies a signal value and the time duration of that value. The sum of the

durations of all the nodes in the list must exactly equal the period of the circuit being

analyzed.

When a signal propagates through a gate or wire where it is delayed by a variable

amount of time, then skew is added to the signal representation, denoting the uncertainty

in when the signal will subsequently change. This skew is maintained separately in the

signal representation to preserve information about the width of pulses. This is done to

avoid incorrect assertions by the Timing Verifier that minimum pulse width

requirements have not been met. If two or more changing signals are combined, the

skew of the resulting signal cannot be represented separately. It is therefore incorporated

into the signal representation by using the CHANGE, RISE, and FALL values. A

detailed example showing this is given in Section 2.8.

2.4.2 Definition of Combinational Functions

This section defines the basic combinational functions used by the Timing

Verifier. All other combinational functions may then be defined in terms of these basic

functions.

The following tables define the INCLUSIVE-OR (OR), AND (AND),

EXCLUSIVE-OR (XOR), CHANGE (CHG), and NOT (NOT) functions for the

-32-

seven-value logic system used in the Timing Verifier.

These functions are uniformly defined to give worst-case values. For example,

when the signal values STABLE” and “RISING” are OR’ed together, the resultant

signal value given is “RISING”. This is because the output in this case will either be

stable or a rising edge, and the rising edge is the worst-case value.

A OR B

B+0 1 S C R F U
A ,

R

A AND B

B-0 1 S C R F U
A ,

Q.
1

z

F
U

BB !?
8 :
t FR 0 u

E u

t

-33-

B--,0 1 S C R F U

CHG 6
B--,0 1 S C R F U

NOT A

The output of the “CHANGE” function has the value “UNDEFINED” if any of

its inputs are undefined. If all of its inputs are defined, then it has the value

“CHANGE” if any of its inputs are changing; otherwise it has the value STABLE”. It

is a useful function in modeling complex combinational logic, where the actual function

being performed is not significant to the verification process. Common examples are in

the modeling of parity trees and adders, in which cases the Timing Verifier cares only

-34-

when the outputs of these circuits are changing, not about their actual values. This

again results In a factorial-level reduction in the complexity and computational effort of

modeling these functions.

2.4.3 Models for Registers and Latches

The Timing Verifier has two models for registers which are shown in Figure 2-l.

The first register model just has “CLOCK” and “DATA” inputs, and can change its

output only on the rising-edge of its “CLOCK” input. The output of the register will be

set to the “CHANGE” state during the time following the rising-edge of %LOCK” as

determined by the minimum and maximum delays of the register. Unless the “DATA”

input is a true or false during the rising-edge of the “CLOCK” input, the output will be

set to the “STA.BLE” value for the rest of the cycle; otherwise, it will be set to the value

of the “DATA” input. The example in Figure 2-1 shows a minimum delay of 1.0 nsec

and a maximum delay of 3.8 nsec being specified for the register, which is 32-bits wide.

The second register shown in Figure 2-1 is the same as the first, except that it has

asynchronous ‘SET” and “RESET” inputs in addition to the “DATA” and “CLOCK”

inputs. If the “SET” input is true and the “RESET” input is false, then the output of

the register is set to true. If the “RESET” input is true and the SET” input is false,

then the output of the register is set to false. If both the ‘SET” and ‘RESET” inputs are

-!35-

true, then the output is set to “UNDEFINED”. If both the “SET” and “RESET” inputs

are false, then the register operates identically to a register without the SET” and

“RESET” inputs. For the cases where the “SET” and “RESET” input are changing, the

output is set to the %HANGE” state. If the SET” and “RESET” inputs are stable, then

the output will be stable if the register is not being clocked. The minimum and

maximum propagation delays from all of the inputs are the same, and are given by the

delay property of the register. If chips with different propagation delays from different

inputs are to be modeled, then buffers are used on the various inputs to insert the

proper delays. Primitives with different delays from different inputs could be

implemented to improve execution efficiency, if desired.

EDGE TRIGGEGm EDGE TRIGGERED
D-TTPE REGISTfER D- TWE REGISTER

UITH SET CN) RESET

CLbCK J CLOCK

Figure 2-1

Two register models used by Timing Verifier

The Timing Verifier has two models for latches, as shown in Figure 2-2. The

“OUTPUT” of the first latch follows the ‘DATA” input when the ‘ENABLE” input is

high, and holds the last value given by the “DATA” input when the “ENABLE” input

is low. The ,“SET” and ‘RESET” inputs on the second latch in Figure 2-2 operate the

same as for the register, and override the operation of the latch when they are non-zero.

The minimum and maximum propagation delay from all of the inputs on the latch are

the same, and is glven by the ‘DELAY” property. For the example shown in the Figure,

the minimum propagation delay is 1.0 nsec, and the maximum propagation delay is 3.5

nsec.

Lam-l LATCH UITH
SET FUQ RESET IWUTS

,
xi9

LIlfCH RESET 329
--

Ll SET R LRTCH RS

WTA DQTQ s I2
I OELfaY- T I CELAY- T

1.e,3.5 1.0.3.6

EN EN

EWWLE I ENWLE I

Figure 2-2

Two latch models used by Timing Verifier

-37-

2.4.4 Set-up and Hold Time Checkers

There are two primitive functions shown in Figure 2-3 which are used to check

set-up and hold times. The first checker is called a “SETUP HOLD CHK”, and checks

to see that the signal connected to the ‘I” input is stable for a period around the rising

edge of the “CK” input. The SETUP” property specifies the set-up time interval,

which is the length of time the input signal must be stable before the rising edge of the

clock input. The *HOLD” property specifies the hold time interval. This is the length

of time the input signal must be stable after the rising edge of the clock input.

The’second primitive shown in Figure 2-3 is a ‘SETUP RISE HOLD FALL

CHK” primitive. It checks the set-up time interval of the input before the rising edge of

the clock input, and the hold time interval after the falling edge of the clock input. It

also checks to see that the input “I” is stable for the entire time interval over which the

clock input ‘CK” is true. This type of set-up and hold checker is needed to verify the

timing constraints on components such as memory elements.

-38-

Figure 2-3

Set-up and hold time checkers used by Timing Verifier

2.4.5 Minimum Pulse Width Checking

The minimum pulse width checker primitive is used to specify verification of

minimum pulse width constraints. Clock inputs to components typically have a

minimum pulse width requirement which says that when they go high, they must stay

high for some specified interval of time, and that when they go low, they must stay low

for some specified time interval. Figure 2-4 shows the ‘MIN PULSE WIDTH”

primitive, which shows a minimum high pulse width of 5.0 nsec being specified, as well

as a minimum low pulse width of 3.0 nsec.

-39-

I MIN USE WIDTH I
CLOCK

I
LOC

Figure 2-4

Minimum pulse width checker

2.5 SIGNAL ASSERTPON~

In order to be able to analyze partially designed circuits, the Verifier must have

timing assertions on as-yet undefined signals. Undefined signals with no assertions are

taken to be always stable, to prevent them from giving rise to numerous spurious timing

errors. These signals are also put on a special cross reference listing, for appropriate

attention from the designer to be directed to them unce.

For defined signals, two types of assertions are used for specifying clocks, and one

-4o-

is used for defining the behavior of control and data signals.

2.5.1 Clock Assertions

There are two categories of clock signals: precision and non-precision. The snly

difference between precision and non-precision clock specifications is the default skew

used by the Timing Verifier when none is explicitly given by the designer. Skew is

generated by the variation in the interconnection delay to the different parts of a large

digital system and by the variations in delay between the different buffers used in the

clock generation. In the design of a large digital system, these variations can become

quite large, and may degrade performance unacceptably. To reduce such skew to within

acceptable limits, the shorter clock paths can have additional delays deliberately inserted

into them. Because the delays in a clock distribution system may vary between successive

implementations of a design, in many cases it must be adjusted by hand, using some type

of adjustable delay for each of the clock lines. By use of this technique, the skew can be

reduced to below some designer-specified value. In order to verify the timing in a

design which has been so de-skewed, it is necessary to describe in detail how the clocks

will be adjusted within the design specification. A number of features have been

provided to make this task as easy as possible, and will be described in the section on

evaluation directives.

-4l-

If a clock signal is adjusted to some specified skew, then an assertion can be given

within its signal name signifying that fact. Assertions are given at the end of signal

names and are preceded by a period. They are considered part of the signal name by

the rese of the SCALD system, which thereby guarantees that all of the assertions for a

given signal are consistent by definition.

The format for the assertions for the precision and non-precision clocks are

<precision clock>
cnon-precision clock>
<assert speo

<value specification>

<time range>
ct ime>
<skeu specification>
<minus skew>
<plus skew>
<time>
<clock units>
<polarity assertion>

::= <signal name> .P <assert speo
::= <signal name> .C <assert epec>
::= <value epecificatior-0

<skew specification> <polarity assertion>
::- <time range> 1

<time range> , <value specification>
::- <time> 1 <time> - <time> 1 <time> + <time>
::= <real number>
::= 1 (<minus skew> , <plus skew> 1
::r - <real number> 1 <zero>
::= <real number> 1 <zero>
::= <clock units>
::= <rea I numbers
::= 1 L

An example of clock specification is

XYZ .C4-6 L

which states that the clock signal goes from high to low at time 4, and from low to high

at time 6. The signal

-42-

XYZ .C2-35-6

Is high from 2 to 3 and from 5 to 6, and is low for the rest of the clock cycle. If a single

time is given instead of a range, a time interval of one clock unit is assumed. For

example,

XYZ .C2,5

is equivalent to the previous signal. The signal

XYZ .P2,5

is again equivalent, except that it is a precision clock, which means that it has a different

default skew. .In general, it was found in the design of the S-l Mark IIA processor that

having two types of clocks -- those that have been adjusted to reduce skew, and those

that haven’t -- was convenient. The motivation was to only adjust those clocks which

must be ad justed,, in order to reduce the aggregate cost of clock de-skewing.

If a plus sign is given between the two time variables instead of the minus sign,

then the second number specifies a width in nanoseconds, rather than the time of the

end of the pulse in clock units. This allows widths of clocks to be specified which don’t

scale with the cycle-time of the circuit. For example,

-43-

XYZ .P2+10

specifies a clock that goes high at clock unit time 2, and stays high for 10.0 nsec

thereafter.

25.2 Stable Assertions

The stable assertion is used to specify when a control or data signal is stable, and

when it may be changing. Its general form is

SIGNAL NAME .S <value specification> <polarity assertion>

For example, the name XYZ .S4-8 says- that the signal is stable from time 4 to time &

and that it may be changing during the rest of the cycle.

This type of assertion has several uses. First, it allows the designer to specify his

assumptions about when signals are valid (i.e., not changing) as he creates them in the

design process, and those assumptions will be used by the Timing Verifier until the

signals are generated by hardware. For signals so generated, the designer’s initial timing

assertion is checked against the timing of the actual signal, and an error is given if the

assertion is violated. Having these assertions on signals greatly improves the readability

-44-

of the design, since a signal name explicitly includes a specification of when it is valid.

Putting these “stable” assertions on interface signals is the key to the ability to

verify a design in sections. After each section is verified, SCALD checks to see that all

interface signals have the same timing assertions on them. If no section of a design

being verified has a timing error and if all of the interface signals of all such sections

have consistent assertions on them, then the entire design must be free of timing errors.

This modular verification capability is in turn crucial to the real-world utility of the

timing verification approach described here, just as the use of subroutines and

procedures is to structured programming.

2.5.3 Interconnection Delay Specification

Taking into account the effects of interconnection delays throughout the design

process is essential if maximum system performance is to be attained when the design is

completed. The ‘consideration of these delays needs to be approached from two different

points of view, depending on whether or not the design is far enough along to allow the

actual interconnection delays to be calculated. If the interconnection delays can be

calculated from detailed simulation of the transmission line properties of the

interconnections in the circuit-as-packaged, then these delay values are used by the

Timing Verifier when checking timing constraints within the design. If the

-45-

interconnection delays are not yet known, the Timing Verifier uses a default

interconnection delay for each signal. If the designer wishes, he may specify within the

design a range for the interconnection delay for a specific signal, which will then

override the default specification.

2.6 EVALUATION DIRECTIVES

Evaluation directives are used to specify:

0 That the control signals being ANDed with a given clock signal must be stable

while the clock is asserted. This is used to detect possible hazards which could

be generated on the output of a gate, resulting in false clocking of the circuit

that the gate controls. Section 1.3.2 gives an example of this type of timing

error. In addition, these directives cause the Timing Verifier to assume that

the control signals will be enabling the gate, so that its output value will be

determined only from the value behavior of the clock signal.

0 The tuning of clocks in systems that have hand-adjusted clocks to reduce skew.

Additional information is needed here since the prints don’t specify how the

clocks are adjusted.

-46-

Consider the circuit shown in Figure 2-5. The clock signal “CK .P2-3 L” is being

ANDed with the control signal “WRITE SO-6 L” to generate a write-enable pulse for

the RAM array. The “&H” directive specifies checking that the control signal “WRITE

SO-6 L” is stable during the interval over which the clock is asserted, to ensure that the

“write” will be either solidly enabled or completely disabled. In addition, this directive

says the timing specified by the clock signal is to be adjusted so that it refers to the time

at which the ourpuf, rather than the fnp~f, of the gate changes. This corresponds to a

circuit in which the clock signals are adjusted to eliminate the skew generated by gating

of the clock lines. The “&H” directive also specifies the assumption that the value of the

‘WRITE .SO-6 L” signal is enabling the gate, allowing the clock signal to always

propagate through the gate.

The different evaluation directive and their meaning are:

E

W

2

A

H

Evaluate gate with no special action. This is the default mode.

Zero wire going into gate.

Zero gate and wire going into it.

Check to see that other inputs to gate are not changing when this
input is asserted (true). In calculating the output of the gate, assume
that the other inputs are enabling the gate.

This directive has the combined effects of the “Z” and -A” directives.

For example, in Figure 2-5 the %Z” directive on the signal “CK .PO-4” states that

the clock timing refers to the time at which the oufpul of the gate changes. If multiple

directives are given after a signal, such as .&HZ”, then the first letter refers to the first

-47-

level of gating after the directive, the second refers to the second level of gating, etc.

There is no limit on the length of a directive string.

328
l&l RFUl

328

10145Q
REG

U WTF(.S0-6(8:31, I T 121*x8:31,
I R2

10176 T aJTFuT~0:31~
Rl

U?ITE Fw .SB-&0:E 0
48

18156 T m?c.B:P 10.e:6.01
til

RlZ#J WR .S4-W0:D

w .P4-e

CK .P2-3 L Lti

Figure 2-5

Example macro definition

-48-

2.7 CASE ANALYSIS

When the timing verification of all possible operations of a circuit are reduced to

the simulation of one cycle of the circuit through the use of the STABLE” and

‘CHANGING” values, overly pessimistic results are sometlmes generated. When this

occurs, the timing verification can be broken down into a number of separate

simulations of the circuit. Each simulation tests out distinct operations of the circuit

which place different timing constraints on the circuit. In doing these separate

simulations, only those parts of the circuit that are affected by the case analysis are

reevaluated, permitting most case analysis to be done quite efficiently.

Some circuits have paths through them which are never used, and which require

the case analysis feature to avoid generating pessimistic timing delays. Consider the

example shown in Figure 2-6. If the circuit is analyzed without case analysis, where the

signal “CONTROL SIGNAL” has the value STABLE”, then the delay from the signal

‘INPUT” to the signal *OUTPUT” would be calculated to be 40 nsec. The problem is

that the Timing Verifier would be unable to determine that both of the multiplexers

could not select the “1” input at the same time. To use case analysis, the designer would

specify that the signal “CONTROL SIGNAL” needs to analyzed separately for the cases

when it is true and when it is false. For the first case, the Timing Verifier would then

-49-

set the signal “CONTROL SIGNAL” to the value #O” whenever the circuit would

normally set it to the value “STABLE”. For the next case, it would set it to the value ‘I”

whenever the circuit would normally set it to the value “STABLE”. By doing this, the

two select lines on the multiplexers would always be set to complementary values, and the

delay from the signal “INPUT” to the signal “OUTPUT” would be calculated to be 30

nsec for both cases.

-5o-

18 Nslx
DELW

IM=lJT

2OWEC
DELAY

Figure 2-6

Example of circuit requiring case analysis

-5L

2.7.1 Case Specification

The designer must identify and specify the cases which need to be handled by case

analysis. He does this by mapping the “STABLE” states into either “0” or “1” for the

signals which control the operation that the circuit is to perform. Consider the following

specification:

CONTROL SI GNAL4:

CONTROL SI GNAL=l :

This specification gives two cases to be evaluated for the circuit in Figure 2-6. The first

case causes the circuit to be simulated with the signal “CONTROL SIGNAL” having its

“STABLE” values mapped into the value “1”. The second case specified causes the

circuit to be simulated again with the signal %ONTROL SIGNAL” having its

“STABLE” values mapped into ‘0”.

-52-

2.8 REPRESENTATION OF SIGNAL VALUES

The Timing Verifier represents in memory the value of each signal over the

circuit cycle time. It uses a linked list, which has the format shown in Figure Z-7. For

each signal, there is a “VALUE BASE” record with a free storage link, a field to store

the skew, a pointer to the evaluation string, and a pointer to the linked list representing

the signal value. The "VALUE" record specifies the signal value and the width of that

value. The sum of all of the “VALUE WIDTH” fields on the linked list is required to

exactly equal the cycle time of the circuit being verified, for consistency-checking

purposes and to avoid ambiguity.

-5!3-

Figure 2-7

Data structures used to represent signal values

The “SKEW” field is used to represent skew caused by delaying the signal by a

variable amount of time. Consider the example in Figure 2-8. The gate has a

minimum delay of 5.0 nsec and a maximum delay of 10.0 nsec. The two input signals

will be ORed together as if the gate had zero delay, and the value of the output signal

will then be delayed by the minimum delay. The skew field will then be set to the

difference between the maximum and the minimum delay of the gate. By doing this,

rather than by using “RISING” and “FALLING” values to represent the uncertaintity in

when the signal will transition between a zero and a one, the symmetry information

-54-

about the width of pulses is preserved since the rising and trailing edges of the signal

are delayed by the same amount. When modeling a technology in which the rising and

falling values of signals are different, this algorithm will have to be modified to take

such asymmetry into account.

X 0 J
0

14 T-10 T-30 T-50

Y 0 I 1 0 I I

T-263 T-40

2 0 1 R) 1 1 F 1
7.15 T-20 T-45

IXLLEBSERECORD

NIL UFCLE REcm URE (ZECORD UFLLE FiEcorzD

-3 > NIL

5 8 1 e

NIL 15 30 6
L

Figure 2-8

Examr4e showing how skew is handled

-55-

This separate representation of skew can be used in essentially any situation in

which a signal value is merely being delayed by a variable amount. However, if two

signals are being combined, then the skew of the combined value in general cannot be

simply represented with a single field. Because of this, when two signals are combined,

their skew is inserted into the resultant signal representation using the “RISING” and

“FALLING” values. For example, the output signal 2” from the last example is shown

in Figure 2-9 with its skew inserted into the signal value. .

2 0 1 R 1 1 1 F 1
T-15 T-20 T-45

I --.--A-d I >I I I

1 >I NIL I

Figure 2-9

Output signal Z with skew represented in signal value

The *EVAL STR PTR” field is used to keep track of the evaluation string

associated with the signal value. For example, if the evaluation string “HZZW” is given

on the input of a gate, then each letter specifies how to evaluate a subsequent level of

-56-

gating. Each gate will remove the letter which specifies how to evaluate it, and wi9l pass

along the rest of the string and the output value from the gate, to specify hew to

evaluate the next level of gating. The string ‘I-IZZW” would then specify the evatuation

of four levels of gating, with the “I-I” controlling the first level, a.nd the ‘W” conerolling

the fourth and last leve9.

2.9 TECIINI@JE USED FOR @YRG?JIT EVALUATYON~

The first step in evaluating a circuit is to InitiaYire to ‘UNDEFINED” all signals

without assertions. Signals with clock assertions’are set to the va9ue specified. SignaOs

with seable assertions are set to the value “STABLE” during the time specified by t9ne

assertion, and to the value “CWANGING” the rest of the time. Signals which are

specified in the case ana9ysis file will be set to the value specified for the case being

calculated whenever they otherwise would be given the value “STABLE”.

In the next step, the Timing Verifier evaluates all of the primitives which define

the circuit by looking at their current input values and, based on these, calculating new

output values. Whenever a new output value is different from its s9d value, all of the

primitives which are driven by ehae output are added to m list of primitives ts be

evaluated during the next pass of the Timing Verifier. This process contiweg

reevaluating those primitives which have had their inputs changed, until al9 sf the

signals stop changing. At that point, the Timing Verifier knows the value of each signal

over the clock period, for the first case to be analyzed.

The next step is to evaluate all of the see-up and hold times, and minimum pulse

width checkers, based on the value of their inputs, and to output error messages

reporting any errors detected. This error checking includes set-up and hold time

constraints specified both by the set-up and hold time primitives and by the %A” and

%H” evaluation directives.

At this point, the first case has been evaluated, and the Timing Verifier is ready

to evaluate the next case. This involves changing the values of those signals specified

by the case analysis file, and reevaluating those primitives whose inputs are affected.

This process is continued, as in the first case, until all signals stop changing. At that

point, the second case has been checked. The Timing Verifier will continue this process,

incrementally reevaluating the network, until all of the cases specified by the designer

have been checked.

-58-

Chapter III

APPLICATIONOFTIMING VERIFICATION

This chapter gives a set of examples of the use of the SCALD Timing Verifier,
.

and discusses statistics on its use.

3.1 SPECIFICATION OF TIMING PROPERTIES OF COMPONENTS

The timing properties of the components which constitute a design are described

to the Timing Verifier in terms of a set of built-in primitive functions. These functions

include gates, regisrers, latches, multiplexets and set-up/hold/minimum-pulse-width

checkers. The definitions of these primitives are given in Section 2.4.

A manufacturer’s specification of a &word by 4-bit register file chip is given in

-59-

Figure S-I to 3-4. The specification to the Timing Verifier of this component’s timing

properties is given in Figure 3-5, and is expressed in the SCALD Hardware Description

Language [Sp191. A brief description of the basic features of this SCALD language will

be sketched in the following example.

Figure 5-5 represents a macro to be expanded every time the chip with name

“116W RAM 10145A” is used. This definition defines a memory whose width in bits is

given by the variable ‘“SIZE”, which is defined when the macro is called. A call to this

macro Is shown in Figure 2-5, showing a size of 82 bits being specified. The

“PARAMETER” body in Figure 3-5 defines the parameters which can be passed to it,

and also specifies the number of bits which each parameter may be passed. For

example, the parameter declaration “I<O:SIZE-I>” says that the “I” parameter has bits

numbered from ‘0” to “SIZE-I,” and is thus SIZE” bits wide. The string “/P” af&r a

signal name says that ehe signal is a parameter of the macro, and is used as a consistency

check, as well as improving the readability of ehe macro. The string “/AI” says that the

signal is local to ehe macro. If neither “/M” or “/P” are given, then the signal is global.

The name of this macro “NW RAM 10145A” is given ip1 the Dower center portion of the

drawing.

The “16W RAM 10145A” definition checks the set-up and hold time constraints

on the input signals “I<O:SIZE-I>“, a CS”, and ‘“AcO:.%“, by using the “SETUP PiOLD

CHK” and “SETUP RISE HOLD FALL CHK” primitives. For example, the upper

“SETUP HOLD CHK” body checks that the “I&SIZE-I>” inputs are stable at lease 4.5

nsec before the falling edge of the write-enable (“WE”) pulse and for at least -1.0 nsec

-65

after it. The leading .-” on the signal “- WE” says to use the complement of the signal

‘WE”. The *SETUP RISE HOLD FALL CHK” body, in the lower left hand corner,

checks that the address lines of ehe memory (“A<O:S>“) are stable at least 3.5 nsec before

the rising edge of the write-enable pulse, that they are stable while the write-enable

pulse is high, and that they stay stable for at least 1.0 nsec after the falling edge of the

write-enable pulse. The ‘MIN PULSE WIDTH” primitive checks that whenever the

write-enable pulse goes high, it does so for at least 4.0 nsec

The *CHG” and “3 CHG” gates at the top of the page cause their outputs to

change after the delay specified by the “DELAY” parameter whenever their inputs

change. For the “CHG” gate, the “DELAY” parameter says that it has a minimum delay

of 1.5 nsec, and a maximum delay of 3.0 nsec. For the “3 CHG” gate, the “DELAY”

parameter says that it has a minimum delay of 3.0 nsec, and a maximum delay of 6.0

nsec.

-61-

F10145A l F10545A
16 x 4 REGISTER FILE (RAM)

FIOK-VOLTAGE COMPENSATED ECL

6ENERAL DESCRlPnON - The F10145A and FlO54SA .r, high-sped 64+iI Random
AOCILI Memories organusd as I Wword by 491 baby. Enema low recwiRrmU M

A HIGH sqnsl On B prevents read and wtife obcr4lions bnd forces the output8 lo
lhe LOW 6141e Wnen d 1s LOW. them input controls chtp opewtons. A HIGH
r~nel oh x chsabllts the Data input (Dn) bullets and enables r6OdOul form we
memory local~on determined by the Address (An) inpuls. A LOW sqnrl on z forces
lhe bn Outpuls LOW and allows Data on Ihe Dn inpuls (0 be stored in the addrewed
localton. De14 wls in the same lOgICal Sense a6 prasenled al lhe dala input& I.e..
the memory is non-inrenmp

6 READACCESSTIME-- lnrTY~
. 60 kP INPUT PuLL.DOWN RESISTORS
. OUTPUTS CAN SE WIRED.OR FOR EASY MEMORY EXPANSJON
. CHIP SELECT AaCESS TIME-4 no TVP
. VOLTACE COMPENSATED. INSENSITIVE TO POWER SIJPPLV VAIIIATIONC
. FULLV COMPATIBLE WITH ALL lO.OC4 SERIES ECL

LOOIC DtAOnAY
Lkhk

‘I

Figure 3-l

coma SVYIOL

CONNECTION DIAOIAY
DIP ITOP VIEWI

l ACnAQE OUTLINE 68

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain View, Ca, 94042.

-62-

DC CtlAMCTLRIClICI: VEE. -62 V. VE-QND

EYMBOL CHARACTERISTIC LIMITS
B W P A uNms r* WNDITIONS

IIn InpUl cunm HIQH *r E6.C VIN - %A
Fs. M-AS Eoo
WE, m-D-3 Ezo

‘EE EWPPIY curmll -154 -wo mA ES’C Inpul8 and OlJlPvl# 0p.n

AC CWAMCTERISTlEC: VEE- -62 V. l~mE6.C

Chip Select Pulu Wbetnh. Yin

Figure 3-2

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain View, Ca 94042.

-6f

Figure 3-3

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and instrument Corporation, 464 Ellis
Street, Mountain View, Ca 94042.

-64-

FAIRCHILD ECL a F10145A l F10545A

WAVEFORUS (bnl’d)

Flg.2 READYODES

ADDRESS INPUT TO DAlAO”TP”Tm-HlDH.t%-LOW,

AoD”rn Accua IIL ---- \
- \

t

\ ------------me
lu

--I -------1 -

/ I----------.

CWP SELECT INPUT 10 DATA WTP,,, @ft I ,,,M,

WRITE ENABLE INPUT TO DATA OUTPUT @% - l.OWl

--‘I- h /--=-? ’ t-

Figure S-4

Manufacturer’s data sheet for register file chip

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis
Street, Mountain View, Ca. 94042.

-65-

1 SIZE1
SETW MXD CM

I~eJ:SIzE-1, tP
Sl

I DEFINE WFlCTLaR
SETLP-4.5;
WXD -1.0 Ice:sxzE-l~ x STEP - SIZE F

CK
EL

I
cs L

FwB:3,
18

SETWMXDW T~e:sI,E- 1, N

cs /P
SZ!

I
SETUP-4.5:
KLD -8.5

48
SETUP RISE

cye:3 /P
WLD FSL CM

I S3
SETLP-3.5:
WXD -1.8

CK 4 UIN Pusz UIDW
Is/P 1 .I Ul

HIGH-4.6:
Lcw -0.0

1 6 W RAM 18145A

Figure S-5

Definition of a B-word random access memory chip

The definition of a P-input multiplexer chip Is given in Figure 3-6. This

definition is given in terms of the 3 MUX” primitive, which has a minimum specified

delay of 1.2 nsec, and a maximum delay of 3.3 nsec from any of the inputs to the output.

The select input (“6”) has an additional minimum delay of 0.3 nsec, and an add&tonal

maximum delay of 1.2 nsec, which is added to the delay of the “2 MUX” primitive.

~e:sIzE-l~ x STEP - SIZE ns
1ce:s1zE-1,

S

Tce:SIZE-1,

CB:SIzE-1, /e

Ml
DELAY- T

T<B:SIzE-1, /P

1<0:SIzE-l~ /P

s rP [ee.3:1.21

18158

Figure 3-6

Definition of a 2-input multiplexer chip

The definition of an edge-triggered register is given in Figure 3-7. This

-67-

definition is stated in terms of the register primitive. It has a minimum delay of 1.5 nsec

and a maxlmum delay of 4.5 nsec. The “SETUP HOLD CHK” primitive specifies a

set-up time of 2.5 nsec and a hold time of 1.5 nsec for the data input ‘I&SIZE-l>” with

respect to the “CK”.

1 SIZE)
sETLpmDcw

Sl
-1

SETLP-2.5:
HCLD -1.5

CK

1 SIZE)
IEG

I~B:SIzE-1, /P
RI

1 CELW- T
Tc0:SIZE-1, /P

1.5.4.5

CK
A

CKff I

PFRC*ZTER DIFIK

I~e:sIzE-l~ X STEP - SIZE
CK

T<O:SIE-1, N

WRCTLRER

FMS

18176

Figure 3-7

Definition of an edge-triggered register chip

The definition of a 2-input OR gate is shown in Figure 3-8. It is defined in

terms of the “2 OR” prlmitive. The gate has a mlnimum propagation delay of 1.0 nsec

and a maximum propagation delay of 2.9 nsec.

x STEP - SIZE FtlS

DELQY-1.0.2.9

18185~

Figure 3-8

Deflnltlon of a Z-input OR gate

The Timing Verifier definition of an arithmetic/logic unit with output latch is

shown in Figure 3-9. This unit performs one of 16 functions on the three data inputs

“A <0:3>“, l B<O:3>“, and %I”. The function to perform is selected by the input S&3>“.

The input ‘E” enables the output latch. The SETUP HOLD CHK” primitives check

the set-up and hold time constraints on the data inputs when the latch is closed. The

propagation delay from the data inputs to the output is specified by the group of XHC”

gates.

-69-

CI /P

18
SETUP HOCD W

s3
I

$ETU=’ - 2.7:
HOLD - -0.5

SETLP M&O C W

SETUP. 7.1;
Hou) - 0.0

d/P mw-0.3. i .B

TtAB A [0.5:2.91
TtS Al [0.0:3.31

I--
Fc0:3, /I’

CI, mw.i .3,2.8

DfXRY-B.0 TSS A [2.8:6.1]

188181

IEFIN

IX&3 XSTEP-4
B0:3

CI L
EL

S0:P

co L /u
FcB:B N

FG LcP:G, N

Figure 3-9

Definition of an arithmetic/logic chip (ALU)

-7o-

3.2 CIRCUIT VERIFICATION EXAMPLE

Figure 2-5 shows an circuit example to be analysed by the Timing Verifier. This

circuit consists of a 16word by 32-bit register file, a 32-bit output register, a 24nput

multiplexer which selects between the read and write addresses for the register file, and

several gates. The circuit is designed to run with a cycle time of 50 nsec. The

minimum/maximum pair of default wire delays used by the Timing Verifier in checking

this circuit was 0.012.0 nsec, and the default clock skew for the clocks was - 1.0 to +I.0

nsec. The time unit used in the specification of the clocks and assertions is 6.25 nsec,

which gives 8 clock units per cycle.

One of the most useful features of the Timing Verifier is its ability to analyse all

of the timing properties of a design as fhc design proceeds, rather than having to wait to

be used until the design is completed. As such, it can accept as input the description of

this circuit example, which would typically be a small section of a much larger system,

and determine if it contains any timing errors.

The stable assertions on the input signals which are not generated in this circuit

are crucial to the ability to verify a design in sections. For example, the assertion on the

signal “W DATA SO-6” states that it is stable from time 0 to time 6, and that it may be

changing during the rest of the cycle, i.e. from time 6 to time 8. The assertion on the

-71-

signal “READ ADR .S4-9” says that it is stable from time 4 to time 9, and may be

changing the rest of the cycle, i.e. from time 1 to time 4. This may seem somewhat

unusual at first, but the cycle time of the circuit Is 8 clock units long, and the assertion

specification is taken to be modulo the cycle time.

Considering interconnection delays on incomplete designs presents some interesting

problems. If the actual wire delays are known for the signals in the circuit, they can be

used to do the analysis. If not, the Timing Verifier will use a default wire delay, unless

the designer specifies wire delays for specific signals. The minimum/maximum default

wire delay pair of 0.012.0 nsec was used for all of the wires in this example, except for

the address lines on the register file, where the designer specified that it could be

anywhere from 0.0 to 6.0 nsec.

Figure 3-10 exhibits the summary output listing generated by the Timing Verifier,

showing the values of the signals over the cycle time of the circuit. For example, the

first entry says that the address lines .ADR&S sw are stable at the beginning of the cycle,

and that they start changing 0.5 nsec into the cycle. They then go stable 5.5 nsec into the

cycle, and stay stable until 25.5 nsec into the cycle. They are then changing from 25.5

nsec to 30.5 nsec. after which point they stay stable for the rest of the cycle.

Figure 3-l I contains the set-up and hold time errors which were detected by the

Timing Verifier. The first message states that the “SETUP HOLD CHK” primitive

specified a set-up time interval of 3.5 nsec, followed by a hold time of 1.0 nsec, and that

the set-up time was violated. The next two lines give the values seen by the ‘SETUP

-72-

HOLD CHK” primitive on the data and clock inputs. They show the data not

becoming stable until Il.5 nsec into the cycle, and the clock starting to rise Il.5 nsec into

the cycle. Thus, the set-up time interval specified was missed by the full 3.5 rnsec. The

next error message shows that the set-up time interval on the output register was

violated. The data didn’t go stable until 47.5 nsec into the cycle and the clock starts

rising at 49.0 nsec, thereby missing the specified set-up time interval of 2.5 rasec by 1.0

nsec.

ADll<e:3> . . .
CgmFg. . .

CK :P4-8 : : :
ourrirt~e:3l> . .
PAY<e:51>.
READ AIM s440:3>:
lus clr
Y DATA .S6-&3l> :

KlTr: .s& . *
YYITE AIM .s0-&:3j

. c:e.s. s:s.s. c:zs.s s:3e.s
1:l.B P:24.9 U6.8 P:49.0
R:ll.k, 1:13.5. F:17.& 0:lS.Q
0:l.B. 11:24.9. 1:2S.@, F:49.8
c:e.s. ~~7.5
c5.e. s9e.s. c:30.0. s:4s.s
C:6.3. s:2s.e
l:l.e, F:24.e. m6.8, h49.e

c:37.s
R:1l.S. 1:13.s. P:17.$. 0:lS.E
c:JI.s
c:37.5

Figure 3-10

Timing Verifier output showing values of signals

-73-

WiPIW
lima ygr: Satup Tim0 - 3.5, Bold Tima = i.e

DATA INPUT . Ui9
(+e.e)
(*.e)

e:e.e, 9:ii.s. 1:is.s. ~~17.9, e:2i.9
se.8, w3.s. s11.5. cm.5, ss.s

E'iRrw
tisr :r;g:&lmp Time = 2.5. EliId t ime = I.5

DATA INPUT - PAY :*:.:: l .

R:e.e, i:3.e. k24.e. e:2s.e. n:49.e
s:e.e. c5.e. ~22.5. c:3e.e, ~~47.5

Figure 8-I 1

Set-up and hold time errors found by Timing Verifier

3.3 PROCESSOR DESIGN TIMING VERIFICATION

The SCALD Timing Verifier has been used in the design of the S-l Mark DA

processor [SP791. This exercise has served to validate the utility of the described

approach to timing verification, and has also provided performance statistics. The Mark

HA is a highly pipelined processor which is designed to issue a new instruction every 50

nsec. The machine has a vector instruction unit which is being designed to process

vector operands at a pipeline rate of one every 25 nsec. The design rules employed by

the Timing Verifier in the examination of the Mark IIA design are:

-74-

0 The overall circuit cycle time was specified to be 50 nsec. Ma&r parts of the

design operate at a 25 nsec cycle time.

0 The minimum/maximum default interconnection delay pair was 0.012.0 nsec,

and was used except for those signals for which the designer specified a

different range. The actual interconnection delays for the Mark IIA design

based on the transmission line properties have not yet been calculated via

detailed simulation, and as such, cannot be checked. Refined rules for future

designs could take into account the number of loads on a run, and the size of

the different loads. It is easy to vary the rule that is used, but more difficult to

find a single rule which works well in practice in all instances. The other

constraint is that it is convenient to the point of necessity to have a rule which

is easy for the designer to use in estimating the delay while doing the design.

A rule which only slightly improves the accuracy of the delay, but which is

difficult for the designer to readily employ, is clearly not worthwhile.

0 The pr,ecision clocks are assumed to have a skew of + 1.0 to - 1.0 nsec from the

times specified, and the non-precision clocks are assumed to have a skew of

+5.0 to -5.0 nsec. The implementated design will have a set of programmable

delay lines which will be used to trim the clocks’ skews to this specification.

0 The propagation delay for the integrated circuits used are the minimum and

maximum delay specifications given by the manufacturer. Where a part is

-75-

manufactured by a number of different companies, the worst-case delay

numbers, determined from the minimum and maximum values of the different

specifications from the various companies are used.

The next two sections will discuss the execution statistics derived and the

evaluation made as results of using the Timing Verifier to examine the S-l Mark DA

design.

3.3.1 Design Experience in Using the Timing Verifier

The basic approach used to validate the functioning of the Timing Verifier and

to assess its utility has been to extensively exercise It on the design of a high

performance digital processor, the S-l Mark IIA. It has been used frequently to check

the design of this system for timing behavior as it has progressed toward

implementation. The approach taken has been to advance the design for about a day,

and then to enter the new design into the SCALD system, via the Stanford University

Drawing System (SUDS) [He723 running on the S-l Mark I system operating in PDP-IO

simulation mode. The design is then processed through the SCALD Macro Expander,

which checks the design for syntax errors and generates a file which represents the

expanded design. The expanded design is then read into the Timing Verifier, which

checks all of the timing constraints imposed on ft.

-76-

This daily introduction into the design effort of feedback about timing errors has

been exceedingly helpful. It has allowed possible timing errors to be corrected while the

associated design is fresh in the minds of the designers, and before a great deal of

additional logic is designed which depends on the timing properties of the logic already

designed.

A typical circuit from the S-l Mark IIA design is shown in Figure 3-12. It

consists of a %-bit arithmetic/logic unit with output latch, a 36-bit debugging/status

register with load-enable, and a function decoder that controls the function select input

to the arithmetic/logic unit. All of the inputs and outputs from this circuit contain

assertions which specify when they can change. This allows the timing of this circuit to

be checked, either by itself or with the rest of the design. Adding these stable assertions

to the interface signals greatly adds to the readability of the design, making its timing

features exceedingly clear.

The timing constraints that need to be checked by the Timing Verifier for the

circuit in Figure 9-12 are the set-up, hold, and minimum pulse width constraints on the

output latch of the arithmetic logic unit and the debugging/status register. In order to

do this the Timing Verifier has to calculate when the inputs to these functions can

change, relative to their clocks, and the width of the clocks.

-77-

368
368 015 FEEC

RU CUE
18BK F-I 18141 T

Dw Lpcc4.m I4 .K-BsaP Al

ml FL
T REG R I4 .s?-Lsw Al

S
- u&ID I4 .s&e .A B Fw8.C

ZERDR
IS cm LP Cam1 CP EL I4 .s2-DB:l, SE‘ lea

AC1

CKR 14 .P3-7.5 L

CK I4 .P0-2 L 62

faN *XT I4 CYCLE .s5-10 L

Figure 3-12

Typical arithmetic circuit in the S-l Mark IIA design

-78-

33.2 Execution Statistics of Timing Verifier

The basic execution statistics associated with running the Macro Expander on the

S-l Mark I system [Sp783 (which has a throughput rate approximately equivalent to an

IBM 370/168) for a major portion of the Mark IIA design consisting of 6357 MS1

ECL-IOK and ECL-IOOK chips are shown in Table 3-I; this portion contains

approximately 97,709 Z-input gates-equivalent of logic and 1,803,136 bits of memory.

These execution statistics are resolved into three portions of this processing task. The

first part is that involved in reading the input files and building the data structures to

represent the design. Next, the Macro Expander does an expansion of the design to

generate a summary listing, and builds up a data structure which resolves all synomyms

between different signals; this is Pass I. Finally, the Macro Expander expands the

design again, this time outputting the fully elaborated design for use by the Timing

Verifier or the SCALD Layout Program; this is Pass 2.

-79

MACRO EXPANSION EXECUTION STATISTICS Elapsed Time,
minutes

Reading input files and building data structures 1.92
Pass I of Macro Expansion 8.42
Pass 2 of Macro Expansion 6.18

16.52

TIMING VERIFIER EXECUTION STATISTICS

Reading input files and building data structures
Generating cross reference listings
Verifying circuit
Generating timing summary listing

4.45
0.72
6.75
0.22

12.14

Total for both Timing Verifier and Macro Expander: 28.66

Table 3-l
Execution statistics for 6357 chip design example

The Macro Expander generates a design representation in terms of primitive

definitions which are built into the Timing Verifier. Table 3-2 gives a listing of the

primitive types generated for the circuit example processed by the Macro Expander.

There were a total of 22 primitive types used, and each type was used 376 times on the

average, for a total of 8282 primitives. This gives 1.3 primitives per chip in the design.

These chips are MS1 components and RAMS which average about 20 gates per chip for

the logic, and IK bits per RAM. The reason why so few primitives were used is because

the primitive types, such as .registers (‘REG RS”) and multiplexers (‘8 MUX”), are

reasonably high-level ones, and each primitive represents an arbitrarily wide data path.

-8o-

For example, the average width of a primitive was 6.5 bits. If this symmetry had not

been exploited, then 53,833 rather than 8,282 primitives would have been used to

represent the circuit.

-8l-

PRIMITIVE TYPE

2 AND
2 CHG
2 MUX
20R
3 CHG
30R
4 CHG
4 MUX
40R
50R
8 CHG
8 MUX
BUF
CHG
LATCH
LATCH RS
MIN PULSE WIDTH
REG
REG RS
SETUP HOLD

NUMBER GENERATED

374
438
288
917
I52
430
6
83
167
241
112
51
I507
693
209
102
361
246
21
1010

SETUP RISE HOLD FALL 343
XOR 53,

8282

AVERAGE NUMBER
OF BITS WIDE

6.1
1.7
7.2
2.3
1.3
2.5
7.8
10.9
3.8
1.3
4.0
6.8
4.8
8.5
6.5
8.7
1.0
25.4
3.7
9.7
17.7
2.0

ii

Table 3-2
Primitive definitions generated for 6357 chip example

The execution statistics for the Timing Verifier are shown in Table 3-l. The

Timing Verifier took 4.45 minutes reading in the output from the SCALD Macro

Expander, and then building up its data structures. It then generated cross reference

listings, which aid the designer in finding where signals are used within the design. The

-82-

next step was the timing verification process itself. This required 6.75 minutes. or about

49 milliseconds per primitive. In doing this verification, 20,052 events were processed,

where an event was caused by an output being given a new value, which in turn caused

all primitives which use that output value to be updated. An event then took 20

milliseconds to process. This verification was for a single case.

The amount of time required to analyze an additional case is proportional to the

number of events which have to be processed for that case. In general, only those

signals which are affected by the case analysis need to be recalculated. The Mark IIA

processor is a pipelined processor, in which every pipeline stage must take the same

amount of time to execute. It was found that case analysis was only rarely required for

that design. However, for some design styles, e.g. those in which variable length cycles

are used, case analysis is essential.

Table 3-3 gives the storage required for data structures used during the Timing

Verification. Representing the circuit description is the single largest part of this

requirement, representing 37.8%. The circuit description is comprised of a

characterization of each primitive used, with a description of which signals were passed

to each of its parameters. This is the main data structure used while the circuit is being

verified, and its average size is 260 bytes per primitive. The S-l Mark I PASCAL

compiler doesn’t pack its records, so all fields require four bytes, except characters and

booleans, which take one byte.

-83-

STORAGE TYPE K BYTES X OF STORAGE

CIRCUIT DESCRIPTION 2149 37.8%
SIGNA L VALUES 1843 32.4%
SIGNAL NAMES 660 11.6%
STRINGS SPACE 600 10.6%
CALL LIST ARRAY 389 6.9%
MISCELLANEOUS 41 0.7%

5684 100.0%

Table 3-3
Storage required by Timing Verifier for 6357 chip example

The next largest part of the storage requirement is for the storage of signal values.

A linked list is stored for each signal in the system representing its value. For the

current example, there were 33,152 of these value lists stored, each of which had a base

record followed by an average of 2.97 value records. The average amount of memory

needed to store the value of a given signal was then 56 bytes. The storage area for

keeping track of signal names is used to point to the value definition for each bit of a

signal vector, and to record which primitives define and use a given signal; it required

11.6% of the total storage used. The string space, which stores the text strings used by

the other data structures, accounts for 10.6% of the storage space. The “CALL LIST

ARRAY” describes which primitives need to be reevaluated when a given bit of a signal

is updated, and accounts for 6.9% of the storage space. The ‘MISCELLANEOUS”

category represents a number of minor data structures used within the Timing Verifier,

which represent 0.7% of the storage. The Timing Verifier program consists of 4700 lines

of PASCAL code and requires 214K bytes of memory when loaded with run-time

-84-

support.

In general, a compiler that packed the records to take up minimum space would

permit a significant reduction in Timing Verifier storage requirements. Also, additional

programming to optimize the data structure for space could result in a non-negligible

storage saving. The approach taken for this research was to get a system up and

running relatively quickly, to evaluate the basic concepts of this approach, and not to try

and produce an optimized implementation for use in a production environment. Even

so, this system has been sufficiently efficient and powerful to be used extensively in the

design of the S-l Mark IIA processor.

-85-

Chapter IV

CONCLUSIONS AND FUTURE RESEARCH

4.1 CONTRIBUTIONS

This thesis has developed an algorithm and associated implementation that:

0 Verifies all of the timing constraints in synchronous sequential circuits,

including those containing value-dependent timing.

0 Verifies timing constraints in these circuits as the design proceeds, without the

need for microcode or diagnostic programs, by doing most of the verification in

a value-independent fashion.

-86-

0 Allows large digital logic circuits to be conveniently verified in sections through

the use of assertions on interface signals.

Many large digital circuits designed today are synchronous sequential digital

systems. Previous approaches used to detect timing errors In these designs have been

unable to handle the portion of circuits for which the timing is a function of the values

of the control signals (e.g., path-searching systems), or have generally been necessarily

incomplete in their testing for all possible timing errors (e.g., gate-level logic simulation.)

Path-searching systems search for the longest (or most critical) path between two

registers or latches. These systems have the fundamental limitation that they cannot

simulate the portions of the circuit which need to know the value behavior of some of

the signals in order to determine the timing of the circuit. Therefore, the handling of

clocks used in unusual ways, such as driving the select line of a multiplexer, or the

treating of circuits requiring case analysis tend to result in large numbers of spurious

error messages being generated. Some of these systems generate so many irrelevant error

messages that they have been found to be inconvenient to use.

Gate-level logic simulation simulates a digital logic system, taking into account the

timing properties of the components. Simulation is generally an inefficient way to check

for timing errors, because of the need to simulate a large number of cycles of the

operation of the circuit in order to test all of the different state transitions which must be

checked; only by doing so can the designer be certain that all of the worst-case paths

through the design have been tested. Such logic simulators are also inconvenient to use,

-87-

because the complete value behavior of each signal in the design needs to be available,

whereas to check only the timing behavior typically requires much, less information.

This additional information required to simulate a design comes in the form of

microcode and diagnostic programs and data patterns to drive signals not defined by the

circuit; these are normally laborious to generate. It is particularly inconvenient to

generate and update such data sets on many occasions, as the design progresses, which in

turn is necessary to allow timing constraints to be verified as the design evolves. With

Timing Verifier usage, it is convenient to check the design on a regular, frequent basis,

so that timing errors can be found as soon as they occur.

This thesis has developed and evaluated in realistic use an algorithm to verify alJ

of the logic level timing constraints in the design of synchronous sequential digital

systems, in a way that eliminates the basic problems of previously available methods.

This algorithm is computationally efficient, requiring an amount of time per case to be

analysed of the same order as what a logic simulator would require to simulate only one

micro-cycle of the circuit. It is also convenient to use and eliminates the need to generate

microcode, diagnostics, and data patterns to drive signals not yet generated, by verifying

most of the design in a value-independent fashion. Moreover, it allows a design to be

conveniently checked for timing errors as it proceeds, and in a highly modular fashion.

A Timing Verifier has been implemented using this algorithm and used in the design of

a high performance pipelined processor, the S-l Mark HA. Extensive use of the Timing

Verifier in the design of this processor has shown it to be a convenient and highly

effective tool.

The early detection of timing errors in designs can result in a significant reduction

in the design time required to make a digital logic system run at a given speed, in

addition to supporting creation of faster-running implementations of designs so realized.

In the design of large, high-speed digital logic systems, the handling of timing errors and

the optimization of the design for timing constitutes a large fraction of the total system

development time. The timing verification technique described here can substatially

improve the procedures which are currently being used, thereby making a significant

impact on how digital computing systems are designed and implemented.

4.2 FUTURE RESEARCH

There are a number of areas of research in this field to be addressed in the futwre.

These include verifying the timing of asynchronous circuits, taking into account different

rising and falling delays, consideration of correlations between different events within

the circuit, and evaluating a system that does probability-based analysis, instead of the.

minimum/maximum-based analysis used in the present work.

-89-

4.2.1 Asynchronous. Self-Timed Circuits

One form of asynchronous circuit currently being discussed in the literature is the

“self-timed” circuit [Me80, Se79J. These are circuits in which each module within a

design keeps track of how long it takes to compute a result. Modules then do

hand-shaking between themselves, keeping each other from proceeding until all of their

inputs are valid. One of the advantages of this type of design is that a central clock

doesn’t have to be distributed, which is a current problem in VLSI designs where only

one level of metallization is used (as clock lines carried significant distances in ~Iow”,

non-metallic lines develop unacceptably large skew. A number of manufacturers are

looking at multiple layers of metallization as another possibility.) The verification

technique developed here could be used to determine the delay of the basic modules, to

determine how much of a delay needs to be inserted in the circuit which specifies when

the module is “done”. Checking the hand-shaking logic between the different modules is

a functional verification correctness-checking problem which is beyound the scope of

this thesis.

-so-

4.2.2 Different Rising and Falling Delays

When designing with an implementation technology such as nMOS, in which

there are greatly differing rising and falling delays, it is overly pessimistic to jwst use the

longer of the two delays, as is done in the timing verification technique developed here.

The fundamental problem is that, except for clock circuitry, the Timing Verifier doesn’t

know the value of a given signal, and therefore doesn’t know whether to use the rising

or falling delay value. Now, in all cases except for multiple inverting levels of logic,

merely using the maximum of the rising and falling delays is the correct choice. One

approach is to recognize multiple inverting levels of logic, and to automatically adjust

the delays specified for those gates to take into account the different rising and falling

delays. This approach would allow the Timing Verifier to continue checking the timing

in a value-independent fashion, while taking into account the different rising and falling

delays.

-9l-

4.2.3 Correlations Within Digital Systems

Another limitation of the Timing Verifier is that it doesn’t consider possible

correlations in the circuit being checked. Figure 4-l shows a circuit in which an

edge-triggered register is loaded from either its old output value or from some new input

value, depending on the value of its select line. This circuit also has a buffer on its

clock line which inserts a relatively large amount of skew into the register clock. The

minimum delay of the register and the multiplexer together are longer than the hold

time of the register, but the Timing Verifier checks the hold time on the register from

the end of the rising edge, and then calculates when the output of the regjster could be

changing, starting from the rising edge of the clock pulse. In doing this, the Timing

Verifier thinks that the input data to the register is changing during the hold time for

the register, and it generates a false error message. The problem is that the Timing

Verifier presently does all of its calculations in terms of absolute time values, and ignores

information about the relative timing of when the register is clocked and when the input

data can change. Thus there is a correla~ian between the two signals which are inputs

into the “SETUP HOLD CHK” primitive which the Timing Verifier should consider;

since it currently does not, it occasionally emits false timing errors in such circumstances.

Correlation-engendered false timing error tends to be a problem in counters, shift

registers, and other circuits in which there is feedback from the output of a register into

-92-

its inputs. The approach which has been taken is to make the designer explicitly insert

a “fictitious” delay into the feedback path which is at least as long as the skew on the

clock signal. This delay is inserted with a text macro called “‘CORR” to make it clear

what the designer is trying to do. Figure 4-2 shows this delay inserted. It suppresses

generation of the false error message, while allowing other possible errors associated with

this circuit to be checked. This approach has worked out well in the S-l Mark IIA

processor design, but puts a significant burden on the designer. It would be preferable if

a simple method could be devised to automatically solve this problem. A logic

simulation sys.tem called “DIGSIM” [Ma77a, Ma77bl has been implemented which keeps

track of the relation of different events to each other and which therefore handles this

type of situation correctly. The techniques used there could be incorporated into a

system based on the concepts developed in this thesis. The extra complexity and

memory required was determined to make this not feasible for the S-l Mark IIA desigrm

work, and was not implemented in the current version of the Timing Verifier.

-93-

32e
REG

Hl Rl

DELAY- T I DELAY- T
OUTPUT< 0: 31)

IWUT~0:31~ 1.0,3.8
Cl
/:
< -I

SELECT LIM I

CLOCK .f%-4

Figure 4-1

Example showing correlation problem

-94-

SElLP i-Da Cm
Sl

I a SETLP-2.5;
HCCD -1.5

cx

I l&Y. Tl-----ll
aJnur~e:31~ r\ccew

CELCIY-
T !

INuT~e:31>

SELECT LIK J

DELAY-1.8. 18.8

CLOCK .P0-4

Figure 4-2

Example showing correlation problem with extra delay Inserted

4.2.4 Probability-Based Analysis

The Timing Verifier does minimum/maximum-based analysis. This means that

all propagation delays are specified with a minimum and maximum possible value. The

design is then checked to see that it will always perform properly if all components

perform within their specified time ranges.

-95-

Probability-based analysis allows a distribution to be specified for each

propagation delay. The design is then checked to see that all of the paths in it are within

their required limits with a specified level of probability. The idea is that there is a low

probability of crll of the components along a given path having either of their extreme

values. The ‘DICSIM” logic simulator does this type of analysis and assumes that all

the components’ timing characteristics have normal distributions [MaVa, Ma77bl The

type of analysis the timing verification should use depends on the technology being

studied and the design techniques a given design team wishes to use. For example, if all

of the components along a given path come from that same production run, then their

delays may be quite highly correlated, and the probability-based analysis may therefore

indicate that a circuit built with them will work with a probability that will be much

higher (or lower) than will be found in the real production environment. The problem

here is that the probability-based analysis assumed that the delays between the different

components were uncorrelated. Another problem with the probability-based analysis

arises when the manufacturer starts testing the timing properties of the components and

sorting them into faster and slower groups. All of the fast components may be sold to

one customer, spoiling an orginal normal distribution for the rest of the customers.

Another problem is that the actual distribution of delays for a given component may

vary significantly from manufacturer to manufacturer, and even from month to month

from the same one. All the manufacturer guarantees is the minimum,and maximum

timing specifications, which are easy to measure. The present approach may therefore

be the best one in such circumstances.

-96-

For those technologies and environments in which probability-based design is

appropriate, an equivalent of Timing Verifier capability is nonetheless needed. Such a

Timing Verifier could keep track of means and variances, rather than minimum and

maximum values.

-97-

Chapter V

IBa783 Bayegan, H.M., and Aas, E., “An Integrated System For Interactive Editing of
Schematics, Logic Simulation and PCB Layout Design,” Proc. 15th Design
Automation Conference, Las Vegas, Nev., June 1978, l-8.

IBo711 Booth, T.L., Divital Networks and Computer Svstems, John Wiley and Sons,
Inc., 1971.

EBo771 Bose, A.K., and Szygenda, S.A., “Detection of Static and Dynamic Hazards in
Logic Nets,” Proc. 14th Design Automation Conference, New Orleans,
Louisiana, June 1977,220-224.

[Br’lPal Breuer, M.A., “A Note on Three Valued Logic Simulation,” IEEE Trans. on
Computers, April 1972, 399-402.

[BrfPbl Breuer, M.A., Design Automation of Digital Svstems, New Jersey:
Prentice-Hall, 1972.

[Br761 Breuer, M.A. and Friedman, A.D., Diapnosis and Reliable Design of Ditital
Systems, Computer Science Press, Inc., 1976.

ICh721 Chaney, T.J., Ornstein, S.M., and Littlefield, W.M., “Beware the
Synchronizer,” COMPCON-72 IEEE Computer Society Conference, San

Francisco, Ca, September 1972.

[Ch741 Chang, H.Y., Smith, G.W. Jr., and Schmidt, L.D., “LAMP: System
Description,” The Bell System Technical Journal, Vol. 53, No. 8, October
1974. 1431-1449.

ICh75al Chappell, S.G., Elmendorf, C.H., and Schmidt, L.D., ‘LAMP: Logic-Circuit
Simulators,” The Bell System Technical Journal, Vol. 53, No. 8, October
1975, 1451-1475.

[Ch75bl Chawla, B.R., Gummel, H.K., and Kozak, P., . MOTIS--An MOS Timing
Simulator,” IEEE Transactions on Circuits and Systems, Vol. CAS-22, No.
12, December 1975, 901-910.

ICh761 Chicoix, C., Pedoussat, J., and Giambiasi, N., “An Accurate Time Delay
Model For Large Digital Network Simulation,” Proc. 13th Design
Automation Conference, San Francisco, Ca., June 1976, 54-60.

ICo691 Couranz, G.R., “An Analysis of Binary Circuits Under Marginal Triggering
Conditions,” Technical Report l l5, Washington University Computer
Systems Laboratory, St. Louis, MO., November 1969.

IEv 773 Evangelisti, C.J., Coertzel, C., and Ofek, H., ‘Designing with LCD:
Language For Computer Design,” Proc. 14th Design Automation
Conference, New Orleans, Louisiana, June 1977, 369-376.

[Ev 783 Evans, D.J., “Accurate Simulation of Flip-Flop Timing Characteristics,” Proc.
15th Design Automation Conference, Las Vegas, Nev., June 1978, 398-404.

[Ha691 Hays, C.G., “Computer-Aided Design: Simulation of Digital Design Logic,”
IEEE Trans. on Computers, Vol. C-18, January 1969, l-10.

[Ha711 Harrison, RA. and Olson, D.J., “Race Analysis of Digital Systems Without
Logic Simulation,” Proc. 8th Design Automation Workshop, Atlantic City,
New Jersey, June 1971.82-94.

[He721 Helliwell, D., “The Stanford University Drawing System,” Stanford Artifical
Intelligence Laboratory, Stanford University, 1972.

[Ho753 Hoehne, H., and Piloty, R., ‘Design Verification at the Register Transfer
Language Level,” IEEE Trans. on Computers, Vol. C24, Sept. 1975,

86 I-867.

[Hs??l Hsieh, E.P., Rasmussen, R.A., Vidunas, L.J., Davis, W.T., “Delay Test
Generation,” Proc. 14th Design Automation Conference, New Orleans,
Louisiana, June 1977,486-491.

[Hu753 Hurtado, M., “Dynamic Structure and Performance of Asymptotically
Bistable Systems,” Washington University D.Sc. dissertation, 1975.

IKiSSJ Kirkpatrick, T.I., and Clark, N.R., “PERT as an AID to Logic Design,” IBM
Journal of Research and Development, Vol. 10, March 1966, 135-141.

IKo781 Koppel, A., Shah, S., and Puri, P., “A High Performance Delay Calculation
Software System For MOSFET Digital Logic Chips,” Proc. 15th Design
Automation Conference, Las Vegas, Nev., June 1978, 405-417.

,IKr671 Krieger, M., Basic Switching Circuit Theorv, The MacMillan Company,
1967.

[Kr??l Krohn, H.E., “Design Verification of Large Scientific Computers,” Proc. 14th
Design Automation Conference, June 1977, New Orleans, 377-385.

[Ku761 Kusik, R., and Wesley, P., ‘Hierarchical Logic Simulation for Digital Systems
Development,” Proc. Electrol76, Boston, Mass., May 1976, pp. 26.3.1-26.3.8.

[Li661 Littlefield, W.M., and Chaney, T.J., ‘The Glitch Phenomenon,” Technical
Memorandum *IO, Washington University Computer Systems Laboratory, St..
Louis, MO., December 1966.

[Lo751 Losleben, P., “Design Validation in Hierarchical Systems,” Proc. 12th Design
Automation Conference, Boston, Mass., June 1975, 431-438.

[Ma??al Magnhagen, B., “Practical Experiences From Signal Probability Simulation
of Digital Designs,” Proc. 14th Design Automation Conference, New
Orleans, Louisiana, June 1977,216-219.

[Mal’lbl Magnhagen, B., “Probability Based Verification of Time Margins in Digital
Designs,” No. I7 in LLnkopine
Dissertations., Department of Electrical Engineering, Linkoping University,
Linkoping, Sweden, September 1977.

-loo-

IMc621 McCluskey, E.J. Jr., and Bartee, T.C., A Survev of Switchinp Circuit
Theory, McGraw-Hill Book Company, 1962.

[Mc78aJ McWilliams, T.M. and Widdoes, L.C., “SCALD: Structured
Computer-Aided Logic Design,” Proc. of the 15th Design Automation
Conference, Las Vegas, Nev., June 1978, 271-277.

[Mc78b] McWilliams, T.M. and Widdoes, L.C., ‘The SCALD Physical Design

[Me803

IN0773

[Ob?Ol

[Pa751

[Pi723

[Pi731

[Ru731

Be793

Bc693

Subsystem,” Proc. 15th Design Automation Conference, Las Vegas, Nev,
June 1978,2?8-284.

Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley
Publishing Company, 1980.

Noon, W.A., “A Design Verification and Logic Validation System,” Proc.
14th Design Automation Conference, New Orleans, Louisiana, June 1977,
362-368.

Oberman, R.M.M., Disciplines in Combinational and Seauential Circuit
Design, McGraw-Hill Book Company, 1970.

Parker, K.P., and McCluskey, E.J., ‘Probabilistic Treatment of General
Combinational Networks,” IEEE Trans. on Computers, Vol. C24, June 1975,
668-670.

Pilling, D.J., Ordung, T.F., and Heald, D., ‘Timing Delays in LSI Circuits,”
IEEE International Symposium on Circuit Theory, North Hollywood, Cx,
April 1972, 31 I-315.

Pilling, D.J., Sun, H.B., “Computer-Aided Prediction of Delays in LSI Logic
Systems,” Proc. 10th Design Automation Conference, June 1973, 182-186.

Ruehli, A.E., ‘Electrical Considerations in the Computer-Aided Design of
Logic Circuit Interconnections, Proc. 10th Design Automation Workship,
June 1973,262-266.

Seitz, C.L., “Self-Timed VLSI Systems,” Proc. of the Caltech Conference on
VLSI, Jan. 1979.

Schnurmann, H.D., and Maling, K., “A Statistical Approach to the
Computation of Delays in Logic Circuits,” IEEE Trans. on Computers, Vol.

-lOl-

C-18, April 1-969, 320-328.

Bp781

Bp 793

rst773

tSz723

ISz751

ETh743

KJn693

Iva771

[Wo783

S-l Project Staff, “Advanced Digital Computing Technology Base
Development for Navy Applications: The S-l Project,” Prepared for the
Naval Systems Division, Office of Naval Research, September 30, 1978.
(UCID-18038)

S-l Project Staff, “FY79 Annual Report: The S-l Project,” Prepared for
The Naval System Division, Office of Naval Research; The Command and
Control Division, Naval Electronics Systems Command; and The Command,
Control, Communication, and Intelligence Program Office, Naval Material
Command. Work in part performed under the auspices of the U.S.
Department of Energy under Contract No. W-?405-ENC-48, September 30,
1979. (UCID-18619)

Storey, T.M., and Barry, J.W., ‘Delay Test Simulation,” Proc. 14th Design
Automation Conference, New Orleans, Louisiana, June 1977, 492-494.

Szygenda, S.A., “TEGASP--Anatomy of a General Purpose Test Generation
and Simulation System for Digital Logic,” Proc. 9th Design Automation
Conference, June, 1972, 116-127.

Szygenda, S.A., and Thompson, E.W., “Digital Logic Simulation In a
Time-Based, Table-Driven Environment; Part I. Design Verification,”
IEEE Computer, Vol. 8, No. 3, March 1975, 24-36.

Thompson, E.W., Szygenda, S.A., Billawala. N., Pierce, R., ‘Timing Analysis
For .Digital Fault Simulation Using Assignable Delays,” Proc. I Ith Design

Automation Workshop, Denver, Colorado, June, 1974, 266-272.

Unger, S.H., Asynchronous Seauential Switchinp Circuits, Wiley-Interscience,
1969.

vancleemput, W.M., uAn Hierarchical Language for the Structural
Description of Digital Systems,” Proc. 14th Design Automation Conference,
June 1977, New Orleans, 377-385.

Wold, M.A., “Design Verification and Performance Analysis,” Proc. 15th
Design Automation Conference, Las Vegas, Nev., June 1978, 264-270.

-lO2-

GPO 689--10&x06

